Direct quantification of the mechanical anisotropy and fracture of an individual exoskeleton layer via uniaxial compression of micropillars.

نویسندگان

  • Lin Han
  • Lifeng Wang
  • Juha Song
  • Mary C Boyce
  • Christine Ortiz
چکیده

A common feature of the outer layer of protective biological exoskeletons is structural anisotropy. Here, we directly quantify the mechanical anisotropy and fracture of an individual material layer of a hydroxyapatite-based nanocomposite exoskeleton, the outmost ganoine of Polypterus senegalus scale. Uniaxial compression was conducted on cylindrical micropillars of ganoine fabricated via focused ion beam at different orientations relative to the hydroxyapatite rod long axis (θ = 0°, 45°, 90°). Engineering stress versus strain curves revealed significant elastic and plastic anisotropy, off-axial strain hardening, and noncatastrophic crack propagation within ganoine. Off-axial compression (θ = 45°) showed the lowest elastic modulus, E (36.2 ± 1.6 GPa, n ≥ 10, mean ± SEM), and yield stress, σ(Y) (0.81 ± 0.02 GPa), while compression at θ = 0° showed the highest E (51.8 ± 1.7 GPa) and σ(Y) (1.08 ± 0.05 GPa). A 3D elastic-plastic composite nanostructural finite element model revealed this anisotropy was correlated to the alignment of the HAP rods and could facilitate energy dissipation and damage localization, thus preventing catastrophic failure upon penetration attacks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title Authors Presenting Author Presentation Type Date and Time Abstract Reference # Multiscale Design of a Natural Articulating Armor: the Chiton Ischnochiton Ruber a Multiscale Structural, Optical and Mechanical Study of a Highly- Translucent Natural Armor: Placuna Placenta

A common feature of the outer layer of biological exoskeletons is structural anisotropy, which has been hypothesized to direct crack propagation, stress and energy dissipation into the underlying more ductile layers, as well as reduce interfacial stresses and mitigate delamination. This study applied focused ion beam (FIB) annular milling to the outer ganoine layer of the mineralized scales of ...

متن کامل

Synthesis and mechanical response of disordered colloidal micropillars.

We present a new approach for studying the uniaxial compressive behavior of colloidal micropillars as a function of the initial defect population, pillar and colloid dimension, and particle-particle interaction. Pillars composed of nanometer scale particles develop cracks during drying, while pillars composed of micron scale particles dry crack-free. We subject the free-standing pillars, with d...

متن کامل

Structural Mechanics Approach to Investigate the Hyperelastic Mechanical Behavior of Single and Multi-wall Carbon Nanotubes

In the current research, a three-dimensional finite element model was considered to predict the mechanical behavior of Single Wall (SWCNTs) and Multi Wall Carbon Nanotubes (MWCNTs). Assuming the nonlinear elastic behavior of C-C bond in large strains, hyperelastic models were considered. Literature review revealed that the material parameters of the hyperelastic models have been determined from...

متن کامل

Mechanical properties of CNT reinforced nano-cellular polymeric nanocomposite foams

Mechanics of CNT-reinforced nano-cellular PMMA nanocomposites are investigated using coarse-grained molecular dynamics simulations. Firstly, static uniaxial stretching of bulk PMMA polymer is simulated and the results are compared with literature. Then, nano-cellular foams with different relative densities are constructed and subjected to static uniaxial stretching and obtained stress-strain cu...

متن کامل

Buckling Behavior of Composite Plates with a Pre-central Circular Delamination Defect under in-Plane Uniaxial Compression

Delamination is one of the most common failure modes in composite structures. In the case of in-plane compressional loading, delamination of a layered flat structure can cause a local buckling in delaminated area which subsequently affects the overall stiffness of the initial structure. This leads to an early failure of the overall structure. Moreover, with an increase in load, the delaminated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 11 9  شماره 

صفحات  -

تاریخ انتشار 2011